
The make Utility 16-1

Chapter 16: The make Utility

The UNIX make utility is a tool for organizing and facilitating the update of
executables or other files which are built from one or more constituent files.
Although make can be used in a wide variety of applications, in this chapter
we concentrate on its use in the area of software development. We describe
how to define relationships between source, object, library and executable files
for use by make, and how to invoke make in its simplest and slightly more
complex forms.

16.1 An Overview of the make Utility

make is a command execution utility. You can use it to essentially automate
any task in which one or more “target” file(s) requires updating via a shell
command when changes have been made to any of its “required” files (files
from which the targets are built). There is some preparation to do, but once
that is complete, all you do is enter the make command!

make compares the modification dates of target files to those of their required
files. For each file that needs updating, make issues the predefined update
command(s) for the file. For example, if file A is a required file of file B (the
target), and if file A has a more recent “last modified date” than file B, then
make re-makes file B by issuing the specified update command(s). Target files
that are found to be more recent than all their required files are skipped over.

make is especially useful in long-term software development projects that
involve large numbers of source files, libraries, and executables connected by a
complex set of relationships. You can use it with any programming language
whose compiler can be run with a shell command.

make obtains information about the files, their relationships, and the specific
update commands from one or both of the following:

• a specially formatted, user-supplied control file called the Makefile (see
section 16.2 The Makefile and its Components)

• make’s set of built-in default rules (see section 16.6 make’s Built-in
Rules)

16-2 The make Utility

In preparing to use make, you generally need to write a Makefile. The
Makefile defines the relationships among the constituent and target files of
your project by listing the required files for each target file, and stating the
shell commands that must operate on the required files to create or update the
target(s). make implicitly treats all required files as targets, in an iterative
manner. A file listed as a required file in one definition statement may also
explicitly appear as a target in another statement. For example, in a program,
typically the executable file (the final target) is created from object files, which
are in turn created by compiling source files. Once you have a working
Makefile, you just run the make program to perform all your updating tasks.

The make man pages give a full description of the command, its options and
features, as well as the format and usage of the Makefile.

16.2 The Makefile and its Components

The Makefile is a blueprint that you design and make uses to create or update
one or more target files based on the most recent modify dates of the required
files. The make command line syntax remains quite simple in the case
where a Makefile is used:

% make [-f <makefile_name>] [<other options>] [<targets>]

If the -f option is not used, make checks for a Makefile of a particular name:
it first looks in the current directory for a file named makefile, then for
Makefile. If the Makefile is still not found, make looks in a couple of other
places (see the man pages). In order to keep things simple and standard, we
recommend that you always use the filename Makefile for your
Makefile(s). Following this convention, you’ll have only one Makefile in a
directory. Your Makefile can contain instructions for building many different
targets. When executing make, you can specify the desired target(s) on the
make command line.

We can categorize the types of statements that can go in a Makefile as follows:

macro definition A macro is a name that you define to represent a
variable that may occur several times within the
Makefile.

target definition A target definition lists the target file, its required files,
and the commands to execute on the required files in
order to produce the target. (You can opt to specify the
totality of this information in separate target
definitions.)

The make Utility 16-3

suffix rules Suffix rules indicate the relationship between target and
source file suffixes (filename extensions). For example
in FORTRAN, object files (*.o) are created from
source files with a suffix of f (i.e. *.f). If no source
file is explicitly given on a target definition line, make
uses suffix rules to determine what source file to use to
produce the target.

suffix declarations Suffix declarations are lists of suffixes (file extensions)
used in suffix rules.

Each new line in the Makefile starts a new definition, except that in target
definitions:

• shell commands with leading tabs are part of the previous definition (a
standard Makefile format that you need to recognize, but that we suggest
you avoid using for reasons explained in section 16.2.2 Targets.)

• shell commands can be continued in standard UNIX format, using a
trailing backslash (\)

Blank lines are permitted between definitions. Comments can be included
after a pound sign (#). To use a literal pound sign, precede it with a backslash,
i.e. \#.

16.2.1 Macros

A macro is a name that you define to represent a variable that may occur
several times within the Makefile, or that needs to be updated frequently.
Macros make maintenance of your Makefile much easier. They are commonly
used to define settings, platform-specific commands, lists of required files for a
target, lists of command options, and so on. make reads all the macro
definitions before executing any commands. It is often convenient to put all
the macro definitions at the head of the Makefile, but this is not necessary.

16-4 The make Utility

Format and Usage

Macro definitions are of the form:

<macro_name> = <value>

where <macro_name> is the name you want to use in place of the longer
<value>. Everywhere in the Makefile that <macro_name> is found,
make substitutes <value>. For portability, if <value> contains any
blank spaces that it is supposed to have, the <value> string must be
enclosed in quotes in the definition statement.1 Backslashes can be used to
continue the same line; you cannot put a new line in a macro value.

Once a macro is defined, you refer to its value in the form
$(<macro_name>). If <macro_name> is a single character, you can
omit the parentheses.

As an example, let’s define a macro FFLAGS to set some FORTRAN default
options to use with the f77 command:

FFLAGS = "-O2 -w -Olimit 1500 -nocpp "

You can now refer to the value of FFLAGS within the Makefile in the form
$(FFLAGS). For example, you might include a target definition line like the
following (the format is explained below in section 16.2.2 Targets):

foo : foo.f ; f77 -o foo $(FFLAGS) foo.f

Special Macros

To be sure that make uses the standard, portable Bourne shell, always include
in your Makefile a macro of the form:

SHELL = /bin/sh

Some versions of make default to your current interactive shell if you don’t
include this explicit SHELL macro in your Makefile. The standard Makefile
format that we describe in this chapter assumes sh as the command interpreter.

Macro Sources

Macro definitions are similar to and can take default values from environment
variables. make gets additional macro definitions from the following sources,
and applies them in the order shown:

1) currently defined environment variables

1. Be aware that this quoted value is what make hands to the shell. The shell then hands
the macro, <e.g., $(FFLAGS) to a program to execute. If you want leading or trail-
ing spaces in <value> to be included in the command, specify the macro in double
quotes in the command statement, e.g., "$(FFLAGS)".

The make Utility 16-5

2) built-in make rules

3) definitions in the Makefile

4) definitions on the command line

In other words, this list is in order of reverse precedence; a value from a source
later in the list overrides a value applied from an earlier one. Using the -e
option on the make command line swaps the first two; see section 16.3.1
General Usage.

Symbols Used in Macros

$$ maps to a literal dollar sign

$* is used in suffix rules (see section 16.2.3 Suffix Rules); it refers to
the filename without the suffix

$@ is the current target make is processing

$< is the implied source in a suffix rule

16.2.2 Targets

Targets are the files that you want to update or create. A complete target
definition includes the name of the target, the files needed to build it (its
required files), and the commands that must be executed to recreate the target.

Format

The standard Makefile format using Bourne shell conventions calls for:

• a space between listed targets

• a colon (:) between the last target and the first required file

• a space between listed required files

• a semi-colon (;) after the last required file if commands follow on the
same line

• a semi-colon (;) between the successive listed commands

A simple target definition with a single target, required file, and command can
be written in the form:

<target> : <required_file> ; <shell_command>

or, using a more traditional format, listing the command on the next line (note
that the semicolon (;) is omitted here):

<target> : <required_file>

{tab}<shell_command>

16-6 The make Utility

In this traditional Makefile format, the commands beyond the first line of a
definition must have leading tabs, and there must be no intervening blank lines.

There are two reasons to avoid this second format: first, when working with
the Makefile it is hard to see the difference between a tab and blanks, and
secondly, some editors change tabs to blanks (or vice versa), which causes
problems (neither emacs in default mode nor vi changes tabs to blanks). You
can check your file to see if it contains tabs or blanks by running the command:

cat -tev <filename>

We propose as an alternative that you use the backslash character (\) to
continue the single definition line down as many physical lines as you have to
go. Also, note that under AIX the standard “tabbed” format can be
unpredictable; it is therefore safer for several reasons to use our suggested
format on this platform.

This “safer” format which we suggest if the entire definition doesn’t fit on the
first line is:

<target> : <required_file>; \

<shell_command>

A target definition line can contain more than one of each element type. Or, it
may contain only two of the three element types. A more complex definition
in our suggested format looks like:

If there is more than one target (e.g. <target_1> <target_2>) in one
definition, the commands are attempted separately for each target.

If you find it easier, you can list multiple required files for a single target in
separate target statements. However only one statement for a given target can
include commands, and therefore must include all the commands. Here is an
example of this alternative format:

<target_1> <target_2> ... : <required_file_1>
<required_file_2> ... <required_file_n> \

<required_file_n+1> ...; \

<shell_command_1> ; <shell_command_2> ; <shell_command_3>
; ... ; \

.

.

.

... ; <shell_command_m>

<target> : <required_file_1>

<target> : <required_file_2>

<target> : <required_file_3>

<target> : ; <shell_command_1> ; <shell_command_2> ;
<shell_command_3> ; ...

The make Utility 16-7

It can be confusing if you separate a series of statements like this from one
another in the Makefile; if you use this format, keep the statements together!

Usage

The relative modification times of the <target> and the
<required_file>(s) determine whether the listed commands will be
executed. If the target file is found to be missing or to be older than any of its
required files, make executes the commands to rebuild it. make treats the
required files iteratively as targets, whether or not they are explicitly listed as
targets in subsequent target definitions, and rebuilds them as necessary before
rebuilding the final target.

16.2.3 Suffix Rules

A suffix is essentially a file extension. A suffix rule defines the relationship
between target and required files by their file extensions. A suffix rule is much
like a target definition except that it uses implied rather than explicit file names
for target (output) and required (input) files.

A suffix rule is of the form:

.<insuffix>.<outsuffix> : ; <command>

The dots are really part of the suffixes themselves. As an example, assume you
have a set of target files to rebuild whose filenames are all of the form *.b.
The required files for these targets have filenames of the form *.a. Define
the suffix rule:

.a.b : ; <command(s)>

make expands this to the following target definition for all files ending in .a
in the current directory:

<filename>.b : <filename>.a ; <command>(s)

If you define suffix rules specifically for intermediate files in a process, you
still need to include a rule for the final and original files, for example, if you
define:

.tex.dvi: ; latex $* #latex cmd makes .dvi files
from .tex files

.dvi.ps: ; dvips $* #dvips cmd makes .ps files from

.dvi files

You still need to provide the rule:

.tex.ps: ; latex $*; dvips $* #make .ps files from

.tex files

make is not sophisticated enough to do the transitive closure on suffix rules.

16-8 The make Utility

Note that suffixes don’t have to start with a dot (.).

16.2.4 Suffix Declarations

Any suffix that you use in a suffix rule must be listed explicitly in a
.SUFFIXES declaration in the same Makefile unless it is included in make’s
built-in suffix declarations (see section 16.6 make’s Built-in Rules). A suffix
included in the built-ins can also be included in a suffix declaration in the
Makefile.

Suffix declarations are really target definitions for a special target named
.SUFFIXES and they contain no commands.1 They are of the format:

.SUFFIXES : .a .b

where .a and .b are suffixes. This example suffix declaration would
allow you to include the suffix rule from 16.2.3 Suffix Rules in your Makefile:

.a.b : ; <command(s)>

You may combine all the suffixes you use in the Makefile into one
.SUFFIXES declaration, or group them into separate statements.

Suffixes that you declare add to the built-ins; they do not replace them.

16.2.5 Control Files within a Makefile

You may encounter situations where it is useful to pipe input or output of one
command to another within a Makefile. You can echo a small control or data
file within the Makefile, rather than maintaining a separate external file. In the
following target definition example from an Isajet Makefile, several control
statements are echoed into the patchy utility in order to extract isaint.f
from the isajet.car patchy library:

 isaint.f : isajet.car ; \

 (echo "+USE,*ISAJET,$(MACHINE). "; \

 echo "+USE,INTERACT. INTERACTIVE PATCH "; \

 echo "+EXE. "; \

 echo "+PAM,T=C. "; \

 echo "+QUIT. ";)\

 | ypatchy isajet.car isaint.f \& genint.lis .GO

1. Most versions of make have other special targets (sometimes called magic targets)
besides .SUFFIXES. These special target names always start with a dot (.).

The make Utility 16-9

16.3 Running make

16.3.1 General Usage

The make utility is invoked with the make command. The command syntax
is:

% make [<options>] [<targets>]

Several <options> are available, and are described in the man pages for
make. We provide a list of some of the commonly used options:

-n Preview the commands, don’t execute. Very
useful for testing.

-d Debug; list the operations used and why (“read
make’s mind”). Available on all supported
platforms.

-e Environment variables override built-ins.

-f <makefile_name> If your Makefile has a name other than
makefile or Makefile, use this option
followed by the file’s name to identify it (leave a
space between the option and the filename).

-p -f /dev/null [|less]Print the built-in rules (see section 16.6
make’s Built-in Rules).

The <targets>, as mentioned earlier, are the files that you want to create or
update. make searches the Makefile to find a target definition statement for
each target listed on the command line.

You can include macro definitions on the command line which get applied
after the assignments made in the Makefile. For example:

% make "CC = gcc" <target>

16.3.2 Usage without Specifying Target

When make is invoked without a specified target, the first non-suffix target in
the Makefile is used. The command is simply:

% make [<options>]

For larger products, it is standard practice to name this target all in the
Makefile, and in the list of required files to list the individual targets which
together actually produce the full product. For example, the first Isajet target
definition is:

all : isadecay.dat \

16-10 The make Utility

 isatext.doc \

 isajet.a \

 isaint \

 isasusy

Notice that here no commands are listed. They would appear in the subsequent
target definitions.

16.3.3 Usage without a Makefile

The extensive built-in rules let you use make quite effectively without having
your own Makefile. Section 16.6 make’s Built-in Rules provides a brief
explanation of the built-in rules. make will look for any file whose name
matches that specified on the command line and which has a file extension that
identifies it as a reasonable source. For example, to produce the executable
foo (the target) from a foo.c or foo.f source that exists in the current
directory, enter:

% make foo

make will look for the C or FORTRAN file as the source file for this target.
Taking the FORTRAN program and no options as an example, this command
is equivalent to (see section 16.2.3 Suffix Rules):

% f77 -o foo foo.f

16.4 “Housekeeping” Targets

It is common practice to have a “housekeeping” target which removes stray
files from the working directories. Typically you would run make on this
target after you’ve completed the make operation on your principle target(s).
It is conventional to call this target clean. Here is an example which removes
unnecessary generated files from several different directories. The target
definition has no required files:

clean: ; \

 rm -f *.bak ;\

 rm -f *.lis ;\

 rm -rf Maketemp ;\

 cd example/isaplt ; rm -f *.lis* ;\

 cd ../jet ; rm -f jet.log*

You need to determine what stray files will be generated in your case, and
define your commands accordingly. Run make on the clean target by entering:

% make clean

The make Utility 16-11

You may wish to define different levels of housekeeping targets. One that
clears out everything, leaving only the original files you had before running
make, is often named clobber.

16.5 Portability

It is desirable for your Makefile to be portable across different UNIX
platforms. Why might this be a problem to implement? As mentioned earlier,
make does all macro processing before any commands are executed.
Therefore environment variables set in shell scripts executed by make have no
effect on make’s macro definitions. And standard make doesn’t support
conditional macro definitions. So, how can you write a portable Makefile?

A Solution

1) Create a script for setting environment variables.

2) Have make run this script (“source” it; see section 5.4 Shell Scripts)
from within the Makefile.

3) After it runs the script, have make rerun itself with a different target and
the original command line options. A $(MAKE) macro which causes
make to rerun itself is a standard feature.

An example of this technique follows.

Example

Create a portable shell script (named, for example, Makeenv) which sets
appropriate environment variables for the Makefile. Here is a simple
Makeenv script which defines the macro F77 based on the current platform
as determined by the command uname -s:

 export F77 MACHINE

 case `uname -s` in

 IRIX)

 F77="f77 -O2 -w -Olimit 1500 -nocpp "

 ;;

 OSF1)

 F77="f77 -O1 -w -Olimit 1500 -nocpp -static "

 ;;

 esac

16-12 The make Utility

The Makefile is below. Run make with the target isaint. The Makefile
runs Makeenv, then make reruns itself with the target do_isaint and the
correct F77 value:

 isaint : isaint.f ; . Makeenv; $(MAKE) do_isaint

 do_isaint : isaint.f ; $(F77) isaint.f -o isaint

Other Utilities

There are other utilities available for more complicated cases:

• gmake (Gnu make), part of the Fermilab gtools product, has some nice
portability features, and supports other advanced features like parallel
compilation on multiprocessor systems.

• There are preprocessors for building locally tailored Makefiles in very
sophisticated ways, including gnu configure, premake, and imake.

16.6 make’s Built-in Rules

make comes equipped with a long list of built-in defaults to make your job
easier. You are free to override any of them in your Makefile. The defaults fall
roughly into four categories:

1) macros that reflect your current environment variables

2) macros that define standard compilers and options

3) suffix rules for finding required files when building targets

4) a list of known suffixes

To get a listing of all the built-in macros and rules, enter the command:

% make -p -f /dev/null [| less]

Depending on your platform, there may be nearly a thousand lines of
definitions, so you might want to pipe this to less, or redirect the output to a
file.

The make Utility 16-13

16.7 A Few Caveats...

1) Recall that in the traditional Makefile target definition format successive
commands are entered on successive lines, each starting with a tab. Be
aware that each of these command lines runs in a different shell. Two
important implications of this are:

a) if you have issued a change directory (cd) command, it does not
carry over to the following line(s)

b) environment and shell variables do not carry over to the following
line(s). (The format which uses a single logical line for the entire
definition avoids this problem.)

2) If you use non-shell commands (for example ls) in definition
statements, be aware that the output may vary from platform to platform.
For this reason it is best not to rely on the specific output format of these
commands.

16-14 The make Utility

